
GDI Overview

Ron Gery

Microsoft Developer Network Technology Group

Created: March 20, 1992

ABSTRACT

This article provides a brief overview of the design and theory of the graphical component of the 
MicrosoftÒ WindowsÔ graphical environment. No details are covered.

OVERVIEW
The graphical component of the MicrosoftÒ WindowsÔ graphical environment is the graphics device 
interface (GDI). It communicates between the application and the device driver, which performs the 
hardware-specific functions that generate output. By acting as a buffer between applications and 
output devices, GDI presents a device-independent view of the world for the application while 
interacting in a device-dependent format with the device.

In the GDI environment are two working spaces—the logical and the physical. Logical space is 
inhabited by applications; it is the “ideal” world in which all colors are available, all fonts scale, and 
output resolution is phenomenal. Physical space, on the other hand, is the real world of devices, with 
limited color, strange output formats, and differing drawing capabilities. In Windows, an application 
does not need to understand the quirkiness of a new device. GDI code works on the new device if the
device has a device driver.

GDI concepts mapped between the logical and the physical are objects (pens, brushes, fonts, 
palettes, and bitmaps), output primitives, and coordinates.

Objects are converted from logical objects to physical objects using the realization process. For 
example, an application creates a logical pen by calling CreatePen with the appropriate parameters. 
When the logical pen object is selected into a device context (DC) using SelectObject, GDI realizes 
the pen into a physical pen object that is used to communicate with the device. GDI passes the logical
object to the device, and the device creates a device-specific object containing device-specific 
information. During realization, requested (logical) color is mapped to available colors, fonts are 
matched to the best available fonts, and patterns are prepared for output. Font selection is more 
complex than other realizations, and GDI, not the driver, performs most of the realization work. 
Similarly, palette realization (done at RealizePalette time as opposed to SelectPalette time) is done 
entirely within GDI. Bitmaps are an exception to the object realization process; although they have the
device-independent bitmap (DIB) logical form, bitmap objects are always device specific and are 
never actually realized.

Output primitives are similarly passed as “logical” requests (to stretch the definition) to the device 
driver, which draws the primitive to the best of its ability and resolution. If the driver cannot handle a 
certain primitive—for example, it cannot draw an ellipse—GDI simulates the operation. For an Ellipse
call, GDI calculates a polygon that represents a digitized ellipse. The resulting polygon can then be 
simulated as a polyline and a series of scanline fills if the device cannot draw polygons itself. The 
application, though, does not care what system component does the actual work; the primitive gets 
drawn.



An application can set up for itself any logical coordinate system, using SetMapMode, 
SetWindowExt, SetWindowOrg, SetViewportExt, and SetViewportOrg. In GDI that coordinate 
system is mapped to the device coordinate system, in which one unit equals one pixel and (0,0) 
defines the topmost, leftmost pixel on the output surface. The device driver sees only coordinates in 
its own space, whereas the application operates only in a coordinate space of its own, disregarding 
the physical pixel layout of the destination.

By maintaining the two separate but linked spaces, logical for the applications and physical for the 
devices, GDI creates a device-independent interface. Applications that make full use of the logical 
space and avoid device-specific assumptions can expect to operate successfully on any output 
device that comes down the turnpike.

(c) 1992 Microsoft Corporation. All rights reserved




